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1. Introduction

We showed some time ago (cf. [6]) how to interpret the Lagrangian of the standard model

in terms of noncommutative geometry. This interpretation was based on the extension of

the Yang-Mills functional to the algebraic framework of NCG. In [6] the color degrees of

freedom were still added in an artificial manner and the action functional was obtained by

analogy with the classical gauge theories. In our joint work with A. Chamseddine [1, 2]

and in [8] we showed how to incorporate the color naturally and more importantly how

to obtain the bosonic part of the standard model action coupled to gravity from a very

general spectral action principle. We call it a principle since it is based on the very general

idea that a refined notion of geometry (suitable in particular to deal with spaces whose

coordinates do not commute) is obtained by focussing not on the traditional gµν but on the

Dirac operator D. As it turns out this way of defining a geometry by specifying the Dirac

operator is meaningful both in mathematical terms (where the Dirac operator specifies the

fundamental class in KO-homology) and in physics terms (where, modulo a chiral gauge

transformation, the Dirac operator is the inverse of the Euclidean propagator of fermions).

The spectral action principle then asserts that D is all that is needed to define the bosonic

part of the action. Moreover since disjoint union of spaces correspond to direct sums of

the Dirac operators, a simple additivity requirement of the action functional shows that it

has to be of the form

S = Tr(f(D/Λ)) (1.1)
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where f is an even function of the real variable and Λ a parameter fixing the mass scale.

In fact the choice of the test function f only plays a small role since when expanded in

inverse powers of Λ the action S only depends on the first moments
∫

f(u)uk−1 du and

the Taylor expansion of f at 0.

Not surprisingly the gravitational Einstein action appears naturally in the expansion of

S, a point which is reminiscent of the idea of induced gravity. Moreover in the presence of

gauge fields A the operator D gets modified (replacing derivatives by covariant derivatives)

to DA and the Yang-Mills action functional YM(A) appears, in its Euclidean form and with

the correct sign if f ≥ 0, in the coefficient of Λ0 in the spectral action (1.1) for the operator

DA. The simple idea developed in [1], then, is that one should understand the modification

D → DA coming from the presence of gauge fields as a slight change in the metric, while the

action principle (1.1) which is in essence purely gravitational delivers when applied to DA

the combined Einstein-Yang-Mills action. To keep track of the “change of metric” coming

from the gauge fields one needs to enhance the algebra of coordinates on the manifold M

to the algebra of matrix valued functions on M which encodes the gauge group as its group

of inner automorphisms. We refer to section 2 of [2] for the case of an SU(n) theory.

The advantage in passing to noncommutative algebras of coordinates A is that their

automorphism group Aut(A) admits a decomposition

1 → Inn(A) → Aut(A) → Out(A) → 1

into inner and outer parts, which fits very well with the physics distinction between the

internal symmetries g ∈ G and the others, i.e. the exact sequence governing the structure

of the symmetry group U of the combined Lagrangian of gravity and matter,

1 → G → U → Diff(M) → 1

Moreover a similar decomposition into an “inner” piece and an outer one holds at the

level of the noncommutative metric i.e. of the Dirac operator. Thus in the noncommutative

world, the metrics (encoded by D) admit natural “inner fluctuations” which come directly

from the self Morita equivalence A ∼ A and are encoded by gauge potentials i.e. operators

of the form

A =
∑

aj [D, bj ] , aj , bj ∈ A , A = A∗

The main result of our joint work [1, 2] is that, when applied to the inner fluctuations of

the product geometry M × F the spectral action gives the standard model coupled with

gravity. Here M is a Riemannian compact spin 4-manifold, the standard model coupled

with gravity is in the Euclidean form, and the geometry of the finite space F is encoded

(as in the general framework of NCG) by a spectral triple (AF ,HF ,DF ) i.e. by a Hilbert

space HF , a representation of the algebra of coordinates AF , and the inverse line element

DF . Besides a Z/2 grading γ this spectral triple has a crucial piece of structure: a real

structure (cf. [7]) i.e. an antilinear isometry of H of square ±1 with simple algebraic rules

and whose dimension, called the KO-dimension is well defined modulo 8 from the signs

involved in the algebraic rules (cf. appendix A).
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For the noncommutative geometry F used in [2] to obtain the standard model coupled

to gravity, all the ingredients are finite dimensional. The algebra AF = C⊕H⊕M3(C) (i.e.

the direct sum of the algebras C of complex numbers, H of quaternions, and M3(C) of 3×3

matrices) encodes the gauge group. The Hilbert space HF is of dimension 901 and encodes

the elementary quarks and leptons. The operator DF encodes those free parameters of the

standard model related to the Yukawa couplings.

For M the spectral triple is given by the representation of the algebra of smooth func-

tions acting by multiplication in the Hilbert space L2(M,S) of square integrable spinors,

the grading is given by γ5 and the real structure JM is given by charge conjugation.

While it is certainly remarkable to obtain the standard model action from simple

geometric principles the above work has several shortcomings:

1. The finite geometry F is put in “by hand” with no conceptual understanding of the

representation of AF in HF .

2. There is a fermion doubling problem (cf. [15]) in the fermionic part of the action.

3. It does not incorporate the neutrino mixing and see-saw mechanism for neutrino

masses.

We shall show in this note how to solve these three problems (the first only partly

since the number of generations is put by hand) simply by keeping the distinction between

the following two notions of dimension of a noncommutative space,

• The metric dimension

• The KO-dimension

The metric dimension manifests itself by the growth of the spectrum of the Dirac

operator. As far as space-time goes it appears that the situation of interest will be the

4-dimensional one. In particular the metric dimension of the finite geometry F will be

zero.

The KO-dimension is only well defined modulo 8 and it takes into account both the

Z/2-grading γ of H as well as the real structure J (cf. appendix A). The real surprise is

that in order for things to work the only needed change (besides the easy addition of a

right handed neutrino) is to change the Z/2 grading of the finite geometry F to its opposite

in the “antiparticle” sector. It is only thanks to this that the Fermion doubling problem

pointed out in [15] can be successfully handled. Moreover it will automatically generate

the full standard model i.e. the model with neutrino mixing and the see-saw mechanism as

follows from the full classification of Dirac operators: Theorem 1.

When one looks at the table (6) of appendix A giving the KO-dimension of the finite

space F one then finds that its KO-dimension is now equal to 6 modulo 8 (!). As a result

we see that the KO-dimension of the product space M×F is in fact equal to 10 ∼ 2 modulo

8. Of course the above 10 is very reminiscent of string theory, in which the finite space

F might be a good candidate for an “effective” compactification at least for low energies2.

1It is 96 in the model described below
2Note however that we are dealing with the standard model, not its supersymmetrized version.
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But 10 is also 2 modulo 8 which might be related to the observations of [14] about gravity.

It is also remarkable that the noncommutative spheres arising from quantum groups,

such as the Podleś spheres already exhibit the situation where the metric dimension (0 in

that case) is distinct from the KO-dimension (2 in that case) as pointed out in [10].

We have gathered the definitions of the basic notions of noncommutative geometry:

spectral triples, real structure and inner fluctuations, in the appendix A. We shall often

refer to these basic notions in the text and urge the reader unfamiliar with these to start

by a brief look at the appendix.

2. The finite non commutative geometry F

In this section we shall first describe in a conceptual manner the representation of AF in

HF and classify the Dirac operators DF . The only small nuance with [8] is that we incor-

porate a right handed neutrino νR and change the Z/2 grading in the antiparticle sector

to its opposite. This, innocent as it looks, allows for a better conceptual understanding of

the representation of AF in HF and also will completely alter the classification of Dirac

operators (Theorem 1).

2.1 The representation of AF in HF

We start from the involutive algebra (with H the quaternions with involution q → q̄)

ALR = C ⊕ HL ⊕ HR ⊕ M3(C) (2.1)

We are looking for a natural representation (ALR,HF , JF , γF ) fulfilling definition 6 of

appendix A in dimension 6 modulo 8. The commutation relation (A.2) of definition 6

shows that there is an underlying structure of ALR-bimodule on HF and we shall use that

structure as a guide. One uses the bimodule structure to define Ad(u), for u ∈ A unitary,

by

Ad(u)ξ = uξu∗ (2.2)

Definition 1. Let M be an ALR-bimodule. Then M is odd iff the adjoint action (2.2) of

s = (1,−1,−1, 1) fulfills Ad(s) = −1.

Such a bimodule is a representation of the reduction of ALR ⊗R A0
LR by the projection

1
2 (1− s⊗ s0). This subalgebra is an algebra over C and we restrict to complex representa-

tions. One defines the contragredient bimodule of a bimodule M as the complex conjugate

space

M0 = {ξ̄ ; ξ ∈ M} , a ξ̄ b = b∗ξ a∗ , ∀ a , b ∈ ALR (2.3)

We can now give the following characterization of the ALR-bimodule MF and the real

structure JF for one generation.

Proposition 1. • The ALR-bimodule MF is the direct sum of all inequivalent irre-

ducible odd ALR-bimodules.
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• The dimension of MF is 32.

• The real structure JF is given by the isomorphism with the contragredient bimodule.

We define the Z/2-grading γF by

γF = c − JF c JF , c = (0,−1, 1, 0) ∈ ALR (2.4)

One then checks that the following holds

J2
F = 1 , JF γF = − γF JF (2.5)

which together with the commutation of JF with the Dirac operators, is characteristic of

KO-dimension equal to 6 modulo 8 (cf. appendix A, definition 6).

The equality ι(λ, q,m) = (λ, q, λ,m) defines a homomorphism ι of involutive algebras

from AF to ALR so that we view AF as a subalgebra of ALR.

Definition 2. The real representation (AF ,HF , JF , γF ) is the restriction to AF ⊂ ALR of

the direct sum MF ⊗ C
3 of three copies of MF .

It has dimension 32 × 3 = 96, needless to say this 3 is the number of generations and

it is put in by hand here.

2.2 The unimodular unitary group SU(AF )

Using the action of AF in HF one defines the unimodular subgroup SU(AF ) of the unitary

group U(AF ) = {u ∈ AF , uu∗ = u∗u = 1} as follows,

Definition 3. We let SU(AF ) be the subgroup of U(AF ) defined by

SU(AF ) = {u ∈ U(AF ) : Det(u) = 1}

where Det(u) is the determinant of the action of u in HF .

One obtains both the standard model gauge group and its action on fermions from the

adjoint action of SU(AF ) in the following way:

Proposition 2. 1. The group SU(AF ) is, up to an abelian finite group,

SU(AF ) ∼ U(1) × SU(2) × SU(3)

2. The adjoint action u → Ad(u) (cf. (2.2)) of SU(AF ) in HF coincides with the

standard model action on elementary quarks and leptons.

To see what happens we first have to label the basis of the bimodule MF . We use the

following idempotents in ALR,

e` = (1, 0, 0, 0) , eL = (0, 1, 0, 0) , eR = (0, 0, 1, 0) , eq = (0, 0, 0, 1) . (2.6)
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The reduced algebras are respectively C, HL, HR, M3(C). One has
∑

ej = 1 and similarly

in the algebra ALR ⊗A0
LR one has

∑

ej ⊗ e0
k = 1

Using the action of ALR ⊗ A0
LR associated to the bimodule structure of M thus gives a

decomposition of the form

M =
∑

ej M ek

Since M is odd this decomposition can be written as

M =
∑

ej M eK +
∑

eJ M ek

Let us consider the term eL M e`. It is a HL-left, C-right module. Thus it is a multiple

of the only irreducible representation πL of HL which is two dimensional. The action of C

is given by the scalar action. Let us consider the term eL M eq. It is a HL-left, M3(C)-

right module. Since the algebra HL ⊗R M3(C) is M6(C) we see that all such bimodules are

multiples of the bimodule π3
L given for the left action of HL as the direct sum of three copies

of πL and with the obvious right action of M3(C) permuting the three copies. Exactly the

same holds for the bimodules eR M e` and eR M eq, which are respectively multiples of πR

and of π3
R. Similar results hold switching the left and right actions i.e. by passing to the

contragredient bimodule of M. We thus see that the sum of the irreducible odd bimodules

is given by

MF = (πL ⊕ πR ⊕ π3
R ⊕ π3

L) ⊕ (πL ⊕ πR ⊕ π3
R ⊕ π3

L)0 (2.7)

This ALR-bimodule MF is of dimension 2 · (2 + 2 + 2 × 3 + 2 × 3) = 32 and the adjoint

action gives the gauge action of the standard model for one generation, with the following

labels for the basis elements of MF ,

(

νL νR

eL eR

)

for the term πL ⊕ πR,
(

uj
L uj

R

dj
L dj

R

)

for the term π3
R ⊕ π3

L ( with color indices j) and the transformation q → q̄ to pass to the

contragredient bimodules. With these labels one checks that the adjoint action of the U(1)

factor is given by multiplication of the basis vectors f by the following powers of λ ∈ U(1):

e ν u d

fL −1 −1 1
3

1
3

fR −2 0 4
3 −2

3

– 6 –
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2.3 The classification of Dirac operators

To be precise we adopt the following,

Definition 4. A Dirac operator is a self-adjoint operator D in HF commuting with JF ,

CF = {(λ, λ, 0)} ∈ AF , anticommuting with γF and fulfilling the order one condition

[[D,a], b0] = 0 for any a, b ∈ AF .

The physics meaning of the condition of commutation with CF is to ensure that one

gauge vector boson (the photon) remains massless.

In order to state the classification of Dirac operators we introduce the following nota-

tion, let Me, Mν , Md, Mu and MR be three by three matrices, we then let D(M) be the

operator in HF given by

D(M) =

[

S T ∗

T S̄

]

(2.8)

where

S = S` ⊕ (Sq ⊗ 13) (2.9)

and in the basis (νR, eR, νL, eL) and (uR, dR, uL, dL),

S` =











0 0 M∗
ν 0

0 0 0 M∗
e

Mν 0 0 0

0 Me 0 0











Sq =











0 0 M∗
u 0

0 0 0 M∗
d

Mu 0 0 0

0 Md 0 0











(2.10)

while the operator T is 0 except on the subspace HνR
⊂ HF with basis the νR which it

maps, using the matrix MR, to the subspace Hν̄R
⊂ HF with basis the ν̄R.

Theorem 1. 1. Let D be a Dirac operator. There exists three by three matrices Me,

Mν, Md, Mu and MR, with MR symmetric, such that D = D(M).

2. All operators D(M) (with MR symmetric) are Dirac operators.

3. The operators D(M) and D(M ′) are conjugate by a unitary operator commuting with

AF , γF and JF iff there exists unitary matrices Vj and Wj such that

M ′
e = V1 Me V ∗

3 , M ′
ν = V2 Mν V ∗

3 , M ′
d = W1 Md W ∗

3 ,

M ′
u = W2 Mu W ∗

3 , M ′
R = V2 MR V̄ ∗

2

In particular Theorem 1 shows that the Dirac operators give all the required features,

such as

• Mixing matrices for quarks and leptons

• Unbroken color

• See-saw mechanism for right handed neutrinos

– 7 –
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Let us briefly explain the last item, i.e. the analogue of the seesaw mechanism in our

context. The restriction of D(M) to the subspace of HF with basis the (νR, νL, ν̄R, ν̄L) is

given by the matrix,










0 M∗
ν M∗

R 0

Mν 0 0 0

MR 0 0 M̄∗
ν

0 0 M̄ν 0











(2.11)

Let us simplify to one generation and let MR ∼ M be a very large mass term- the largest

eigenvalue of MR will be set to the order of the unification scale by the equations of

motion (6.1) of the spectral action below- while Mν ∼ m is much smaller3. The eigenvalues

of the matrix (2.11) are then given by

1

2
(±M ±

√

M2 + 4m2)

which gives two eigenvalues very close to ±M and two others very close to ±m2

M
as can be

checked directly from the determinant of the matrix (2.11), which is equal to |Mν |4 ∼ m4

(for one generation).

3. The spectral action for M × F and the Standard Model

We now consider a 4-dimensional smooth compact Riemannian manifold M with a fixed

spin structure and recall that it is fully encoded by its Dirac spectral triple (A1,H1,D1) =

(C∞(M), L2(M,S), ∂/M ). We then consider its product with the above finite geometry

(A2,H2,D2) = (AF ,HF ,DF ). With (Aj ,Hj,Dj) of KO-dimensions 4 for j = 1 and 6 for

j = 2, the product geometry is given by the rules,

A = A1 ⊗A2 , H = H1 ⊗H2 , D = D1 ⊗ 1 + γ1 ⊗ D2 , γ = γ1 ⊗ γ2 , J = J1 ⊗ J2

Note that it matters that J1 commutes with γ1 to check that J commutes with D. The

KO-dimension of the finite space F is 6 ∈ Z/8 and thus the KO-dimension of the product

geometry M ×F is now 2 ∈ Z/8. In other words according to appendix A, definition 6 the

commutation rules are

J2 = −1, JD = DJ, and Jγ = −γJ . (3.1)

Let us now explain how these rules allow to define a natural antisymmetric bilinear form

on the even part H+ = {ξ ∈ H , γ ξ = ξ} of H.

Proposition 3. On a real spectral triple of KO-dimension 2 ∈ Z/8, the following equality

defines an antisymmetric bilinear form on H+ = {ξ ∈ H , γ ξ = ξ},

AD(ξ′, ξ) = 〈J ξ′,D ξ〉 , ∀ ξ, ξ′ ∈ H+ (3.2)

The above trilinear pairing between D, ξ and ξ′ is gauge invariant under the adjoint action

(cf. (A.6)) of the unitary group of A,

AD(ξ′, ξ) = ADu
(Ad(u)ξ′,Ad(u)ξ) , Du = Ad(u)D Ad(u∗) (3.3)

3it is a Dirac mass term, fixed by the Higgs vev
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Now the Pfaffian of an antisymmetric bilinear form is best expressed in terms of the

functional integral involving anticommuting “classical fermions” which at the formal level

means that

Pf(A) =

∫

e−
1
2

A(ξ) D[ξ]

It is the use of the Pfaffian as a square root of the determinant that allows to solve the

Fermion doubling puzzle which was pointed out in [15]. The solution obtained by a better

choice of the KO-dimension of the space F and hence of M × F is not unrelated to the

point made in [11].

Theorem 2. Let M be a Riemannian spin 4-manifold and F the finite noncommutative

geometry of KO-dimension 6 described above. Let M × F be endowed with the product

metric.

1. The unimodular subgroup of the unitary group acting by the adjoint representation

Ad(u) in H is the group of gauge transformations of SM.

2. The unimodular inner fluctuations A of the metric (cf. appendix A) are parameterized

exactly by the gauge bosons of SM (including the Higgs doublet).

3. The full standard model (see the explicit formula in § 5) minimally coupled with

Einstein gravity is given in Euclidean form by the action functional4

S = Tr(f(DA/Λ)) +
1

2
〈J ξ,DA ξ〉 , ξ ∈ H+

applied to unimodular inner fluctuations DA = D + A + JAJ−1 of the metric.

The proof is an excruciating computation, which is a variant of [2] (cf. [12] for a

detailed version). After turning off gravity to simplify and working in flat space (after

Wick rotation back to Lorentzian signature) one gets exactly the Lagrangian of § 5 which

can hardly be fortuitous. The fermion doubling problem is resolved by the use of the

Pfaffian, we checked that part for the Dirac mass terms, and trust that the same holds for

the Majorana mass terms. There is one subtle point which is the use of the following chiral

transformation:

U = ei π

4
γ5

to transform the fermionic part of the action to the traditional one i.e. the Euclidean action

for Fermi fields (cf. [5]). While this transformation is innocent at the classical level, it is

non-trivial at the quantum level and introduces some kind of Maslov index in the transition

from our form of the Euclidean action to the more traditional one. We shall now give more

details on the bosonic part of the action.

4We take f even and positive with f (n)(0) = 0 for n ≥ 1 for definiteness. Note also that the components

of ξ anticommute so the antisymmetric form does not vanish.

– 9 –
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4. Detailed form of the bosonic action

We shall now give the precise form of the bosonic action, the calculation is entirely similar

to [2] with new terms appearing from the presence of MR.

One lets fk =
∫ ∞
0 f(u)uk−1du for k > 0 and f0 = f(0). Also

a = Tr(M∗
ν Mν + M∗

e Me + 3(M∗
uMu + M∗

d Md)) (4.1)

b = Tr((M∗
ν Mν)

2 + (M∗
e Me)

2 + 3(M∗
uMu)2 + 3(M∗

d Md)
2)

c = Tr(M∗
RMR)

d = Tr((M∗
RMR)2)

e = Tr(M∗
RMRM∗

ν Mν)

The spectral action is given by a computation entirely similar to [2] which yields:

S =
1

π2
(48 f4 Λ4 − f2 Λ2 c +

f0

4
d)

∫ √
g d4x (4.2)

+
96 f2 Λ2 − f0 c

24π2

∫

R
√

g d4x

+
f0

10π2

∫

(
11

6
R∗R∗ − 3Cµνρσ Cµνρσ)

√
g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫

|ϕ|2 √g d4x

+
f0

2π2

∫

a |Dµϕ|2 √g d4x

− f0

12π2

∫

aR |ϕ|2 √g d4x

+
f0

2π2

∫

(g2
3 Gi

µν Gµνi + g2
2 Fα

µν Fµνα +
5

3
g2
1 Bµν Bµν)

√
g d4x

+
f0

2π2

∫

b |ϕ|4 √g d4x

where (a, b, c, d, e) are defined above and Dµϕ is the minimal coupling. A simple change of

variables as in [2], namely

H =

√
a f0

π
ϕ , (4.3)

so that the kinetic term becomes5

∫

1

2
|DµH|2 √g d4x

and
g2
3 f0

2π2
=

1

4
, g2

3 = g2
2 =

5

3
g2
1 . (4.4)

5here we differ slightly from [2] by a factor of
√

2 to match the conventions of Veltman [17]

– 10 –
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transforms the bosonic action into the form:

S =

∫

d4x
√

g

[

1

2κ2
0

R + α0 Cµνρσ Cµνρσ (4.5)

+ γ0 + τ0
∗R∗R + δ0 R;µ

µ

+
1

4
Gi

µν Gµνi +
1

4
Fα

µν Fµνα +
1

4
Bµν Bµν

+
1

2
|Dµ H|2 − µ2

0|H|2 − 1

12
R |H|2 + λ0|H|4

]

where

1

κ2
0

=
96 f2 Λ2 − f0 c

12π2
(4.6)

µ2
0 = 2

f2 Λ2

f0
− e

a
(4.7)

α0 = − 3 f0

10π2
(4.8)

τ0 =
11 f0

60π2
(4.9)

δ0 = −2

3
α0 (4.10)

γ0 =
1

π2
(48 f4 Λ4 − f2 Λ2 c +

f0

4
d) (4.11)

λ0 =
π2

2 f0

b

a2
=

b g2

a2
(4.12)

5. Detailed form of the spectral action without gravity

To make the comparison easier we Wick rotate back to Minkowski space and after turning

off gravity by working in flat space (and addition of gauge fixing terms6) the spectral action,

after the change of variables summarized in table 1, is given by the following formula:

LSM = −1
2∂νga

µ∂νg
a
µ − gsf

abc∂µga
νgb

µgc
ν − 1

4g2
sf

abcfadegb
µgc

νg
d
µge

ν − ∂νW
+
µ ∂νW

−
µ −

M2W+
µ W−

µ − 1
2∂νZ

0
µ∂νZ

0
µ − 1

2c2w
M2Z0

µZ0
µ − 1

2∂µAν∂µAν − igcw(∂νZ0
µ(W+

µ W−
ν −

W+
ν W−

µ ) − Z0
ν (W+

µ ∂νW−
µ − W−

µ ∂νW
+
µ ) + Z0

µ(W+
ν ∂νW

−
µ − W−

ν ∂νW+
µ )) −

igsw(∂νAµ(W+
µ W−

ν − W+
ν W−

µ ) − Aν(W
+
µ ∂νW

−
µ − W−

µ ∂νW
+
µ ) + Aµ(W+

ν ∂νW
−
µ −

W−
ν ∂νW+

µ )) − 1
2g2W+

µ W−
µ W+

ν W−
ν + 1

2g2W+
µ W−

ν W+
µ W−

ν + g2c2
w(Z0

µW+
µ Z0

νW−
ν −

Z0
µZ0

µW+
ν W−

ν ) + g2s2
w(AµW+

µ AνW−
ν − AµAµW+

ν W−
ν ) + g2swcw(AµZ0

ν (W+
µ W−

ν −
W+

ν W−
µ ) − 2AµZ0

µW+
ν W−

ν ) − 1
2∂µH∂µH − 2M2αhH2 − ∂µφ+∂µφ− − 1

2∂µφ0∂µφ0 −
βh

(

2M2

g2 + 2M
g

H + 1
2(H2 + φ0φ0 + 2φ+φ−)

)

+ 2M4

g2 αh−gαhM
(

H3 + Hφ0φ0 + 2Hφ+φ−)

−
1
8g2αh

(

H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2
)

−
gMW+

µ W−
µ H − 1

2g M
c2w

Z0
µZ0

µH − 1
2 ig

(

W+
µ (φ0∂µφ− − φ−∂µφ0) − W−

µ (φ0∂µφ+ − φ+∂µφ0)
)

+
1
2g

(

W+
µ (H∂µφ− − φ−∂µH) + W−

µ (H∂µφ+ − φ+∂µH)
)

+ 1
2g 1

cw
(Z0

µ(H∂µφ0 − φ0∂µH) +

6We add the Feynman gauge fixing terms just to simplify the form of the gauge kinetic terms
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M ( 1
cw

Z0
µ∂µφ0 +W+

µ ∂µφ− +W−
µ ∂µφ+)− ig s2

w

cw
MZ0

µ(W+
µ φ−−W−

µ φ+)+ igswMAµ(W+
µ φ−−

W−
µ φ+) − ig 1−2c2w

2cw
Z0

µ(φ+∂µφ− − φ−∂µφ+) + igswAµ(φ+∂µφ− − φ−∂µφ+) −
1
4g2W+

µ W−
µ

(

H2 + (φ0)2 + 2φ+φ−)

− 1
8g2 1

c2w
Z0

µZ0
µ

(

H2 + (φ0)2 + 2(2s2
w − 1)2φ+φ−)

−
1
2g2 s2

w

cw
Z0

µφ0(W+
µ φ− + W−

µ φ+) − 1
2 ig2 s2

w

cw
Z0

µH(W+
µ φ− − W−

µ φ+) + 1
2g2swAµφ0(W+

µ φ− +

W−
µ φ+) + 1

2 ig2swAµH(W+
µ φ− − W−

µ φ+) − g2 sw

cw
(2c2

w − 1)Z0
µAµφ+φ− − g2s2

wAµAµφ+φ− +
1
2 igs λa

ij(q̄
σ
i γµqσ

j )ga
µ − ēλ(γ∂ + mλ

e )eλ − ν̄λ(γ∂ + mλ
ν)νλ − ūλ

j (γ∂ + mλ
u)uλ

j − d̄λ
j (γ∂ +

mλ
d)dλ

j + igswAµ

(

−(ēλγµeλ) + 2
3(ūλ

j γµuλ
j ) − 1

3 (d̄λ
j γµdλ

j )
)

+ ig
4cw

Z0
µ{(ν̄λγµ(1 + γ5)νλ) +

(ēλγµ(4s2
w − 1 − γ5)eλ) + (d̄λ

j γµ(4
3s2

w − 1 − γ5)dλ
j ) + (ūλ

j γµ(1 − 8
3s2

w + γ5)uλ
j )} +

ig

2
√

2
W+

µ

(

(ν̄λγµ(1 + γ5)U lep
λκeκ) + (ūλ

j γµ(1 + γ5)Cλκdκ
j )

)

+

ig

2
√

2
W−

µ

(

(ēκU lep†
κλγµ(1 + γ5)νλ) + (d̄κ

j C†
κλγµ(1 + γ5)uλ

j )
)

+
ig

2M
√

2
φ+

(

−mκ
e (ν̄λU lep

λκ(1 − γ5)eκ) + mλ
ν (ν̄λU lep

λκ(1 + γ5)eκ
)

+

ig

2M
√

2
φ−

(

mλ
e (ēλU lep†

λκ(1 + γ5)νκ) − mκ
ν(ēλU lep†

λκ(1 − γ5)νκ
)

− g
2

mλ
ν

M
H(ν̄λνλ) −

g
2

mλ
e

M
H(ēλeλ) + ig

2
mλ

ν

M
φ0(ν̄λγ5νλ) − ig

2
mλ

e

M
φ0(ēλγ5eλ) − 1

4 ν̄λ MR
λκ (1 − γ5)ν̂κ −

1
4 ν̄λ MR

λκ (1 − γ5)ν̂κ + ig

2M
√

2
φ+

(

−mκ
d(ūλ

j Cλκ(1 − γ5)dκ
j ) + mλ

u(ūλ
j Cλκ(1 + γ5)dκ

j

)

+

ig

2M
√

2
φ−

(

mλ
d(d̄λ

j C†
λκ(1 + γ5)uκ

j ) − mκ
u(d̄λ

j C†
λκ(1 − γ5)uκ

j

)

− g
2

mλ
u

M
H(ūλ

j uλ
j ) −

g
2

mλ

d

M
H(d̄λ

j dλ
j ) + ig

2
mλ

u

M
φ0(ūλ

j γ5uλ
j ) − ig

2
mλ

d

M
φ0(d̄λ

j γ5dλ
j )

This formula compares nicely with [17]. Besides the addition of the neutrino mass

terms, and absence of the ghost terms there is only one difference: in the spectral action

Lagrangian one gets the term:

M (
1

cw
Z0

µ∂µφ0 + W+
µ ∂µφ− + W−

µ ∂µφ+) (5.1)

while in the Veltman’s formula [17] one gets instead the following:

−M2φ+φ− − 1

2c2
w

M2φ0φ0 (5.2)

This difference comes from the gauge fixing term

Lfix = −1

2
C2 , Ca = −∂µW µ

a + Ma φa (5.3)

given by the Feynman-t’Hooft gauge in Veltman’s formula [17], indeed one has

Lfix = −1

2
(∂µW µ

a )2 − 1

2c2
w

M2φ0φ0 − M2φ+φ− + M (
1

cw
φ0∂µZ0

µ + φ−∂µW+
µ + φ+∂µW−

µ )

(5.4)

The numerical values are similar to those of [2] and in particular one gets the same

value of gauge couplings as in grand unified SU(5)-theory. This means that in the above

formula the values of g, gs and sw, cw are fixed exactly as in [2] at

gs = g , tg(w)2 =
3

5
(5.5)
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One also gets a specific value of the Higgs scattering parameter αh, as in [2] (which agrees

with [13]),

αh =
8 b

a2
(5.6)

(with the notations (4.1)) which is of the order of 8
3 if there is a dominating top mass. The

change of notations for the Higgs fields is

H =
1√
2

√
a

g
(1 + ψ) = (

2M

g
+ H − iφ0,−i

√
2φ+) , (5.7)

while the huge term in Λ2 in the spectral action can be absorbed by a suitable choice of

the tadpole constant βh

βh = 2αh M2 − 4
f2Λ

2

f0
+ 2

e

a
(5.8)

Note that the matrices Mu, Md, Mν and Me are only relevant up to an overall scale.

Indeed they only enter in the coupling of the Higgs with fermions and because of the

rescaling (4.3) only by the terms

kx =
π√
a f0

Mx , x ∈ {u, d, ν, e} (5.9)

which are dimensionless matrices by construction. The conversion for the mass matrices is

(ku)λκ =
g

2M
mλ

u δκ
λ (5.10)

(kd)λκ =
g

2M
mµ

d Cλµδρ
µC†

ρκ

(kν)λκ =
g

2M
mλ

ν δκ
λ

(ke)λκ =
g

2M
mµ

e U lep
λµδρ

µU lep†
ρκ

It might seem at first sight that one can simply use (5.10) to define the matrices kx but

this overlooks the fact that (5.9) implies one constraint:

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd)) = 2 g2 , (5.11)

using (4.4) to replace π2

f0
by 2 g2. When expressed in the right hand side i.e. the standard

model parameters this gives

∑

λ

(mλ
ν )2 + (mλ

e )2 + 3 (mλ
u)2 + 3 (mλ

d)2 = 8M2 (5.12)

where M is the mass of the W boson. Thus with the standard notation ([13]) for the

Yukawa couplings, so that the fermion masses are mf = 1√
2
yf v, v = 2M

g
the relation reads

∑

λ

(yλ
ν )2 + (yλ

e )2 + 3 (yλ
u)2 + 3 (yλ

d )2 = 4 g2 (5.13)

Neglecting the other Yukawa coupling except for the top quark, and imposing the re-

lation (5.13) at unification scale, then running it downwards using the renormalization
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Standard Model notation notation Spectral Action

Higgs Boson ϕ = (2M
g

+ H − iφ0,−i
√

2φ+) H = 1√
2

√
a

g
(1 + ψ) Inner metric(0,1)

Gauge bosons Aµ, Z0
µ, W±

µ , ga
µ (B, W, V ) Inner metric(1,0)

Fermion masses mu, mν Mu = δu, Mν = δν Dirac(0,1) in u, ν

u, ν

CKM matrix Cκ
λ , md Md = C δd C† Dirac(0,1) in d

Masses down

Lepton mixing U lep
λκ, me Me = U lep δe U lep† Dirac(0,1) in e

Masses leptons e

Majorana MR MR Dirac(0,1) in νR, ν̄R

mass matrix

Gauge couplings g1 = g tg(w), g2 = g, g3 = gs g2
3 = g2

2 = 5
3 g2

1 Fixed at

unification

Higgs scattering 1
8 g2 αh, αh =

m2

h

4M2 λ0 = g2 b
a2 Fixed at

parameter unification

Tadpole constant βh, (−αh M2 + βh

2 ) |ϕ|2 µ2
0 = 2 f2Λ

2

f0

− e
a

−µ2
0 |H|2

Graviton gµν ∂/M Dirac(1,0)

Table 1: Conversion from Spectral Action to Standard Model.

group one gets the boundary value 2√
3
g ∼ 0.597 for yt at unification scale which gives

a Fermi scale value of the order of y0 =∼ 1.102 and a top quark mass of the order of
1√
2
y0 v ∼ 173 y0 GeV. This is fine since a large neglected tau neutrino Yukawa coupling

(allowed by the see-saw mechanism) similar to that of the top quark, lowers the value at

unification by a factor of
√

3
4 which has the effect of lowering the value of y0 to y0 ∼ 1.04.

This yields an acceptable value for the top quark mass (whose Yukawa coupling is y0 ∼ 1),

given that we still neglected all other smaller Yukawa couplings.

The conversion table 1 shows that all the mass parameters of the standard model now

acquire geometric meaning as components of the noncommutative metric as displayed in

the right column.
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6. Interpretation

It is not clear what the physics meaning is since unlike in grand unified theories one is still

lacking a renormalizable theory that would take over above the unification energy. But

one can nevertheless hope that such a theory will be discovered along the lines of QFT on

noncommutative spaces, or even that the fundamental theory has selected a preferred scale

and is a fully unified theory at the operator theoretic level (i.e. a kind of spectral random

matrix theory where the operator D varies in the symplectic ensemble corresponding to the

commutation with i =
√
−1 and J that generate the quaternions) of which the standard

model coupled with gravity is just a manifestation when one integrates the high energy

modes á la Wilson. Then following [2] one can take the value of the Higgs quartic self-

coupling (5.6) as an indication at that same energy and ([13]) get a rough estimate (around

170 GeV) for the Higgs mass under the “big desert” hypothesis. It is satisfactory that the

prediction for the Weinberg angle (the same as SU(5) GUT) is not too far off and that the

mass relation gives a sensible answer. But it is of course very likely that instead of the big

desert one will meet gradual refinements of the noncommutative geometry M × F when

climbing in energy to the unification scale.

The naturalness problem is of course still there, but interestingly the new terms in-

volving MR provide room for obtaining in the spectral action a term that mimics the nasty

quadratic divergence, whose coefficient changes sign under the running of the remormal-

ization group. This freedom holds provided that the number of generations is > 1. The

quadratic coupling is µ2
0 = 2 f2 Λ2

f0
− e

a
. The presence of the new term − e

a
(which was

absent in [2]) allows for the possibility that the sign of this mass term is arbitrary provided

there are at least two generations. We shall assume to discuss this point that the matrix

MR is a multiple of a fixed matrix kR i.e. is of the form MR = x kR. The value of x is fixed

by the equations of motion of the spectral action i.e. by minimizing the cosmological term.

It gives

x2 =
2 f2 Λ2 Tr(k∗

RkR)

f0 Tr((k∗
RkR)2)

, M∗
RMR =

2 f2 Λ2

f0

k∗
RkR Tr(k∗

RkR)

Tr((k∗
RkR)2)

(6.1)

Using (6.1) and (5.9) one gets

µ2
0 = 2Λ2 f2

f0
(1 − X) , X =

Tr(k∗
RkR k∗

νkν)Tr(k∗
RkR)

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd))Tr((k∗
RkR)2)

(6.2)

In order to compare X with 1 we need to determine the range of variation of the largest

eigenvalue of ρ(kR) =
k∗

R
kR Tr(k∗

R
kR)

Tr((k∗

R
kR)2) as a function of the number N of generations. One

finds that this range of variation, for kR ∈ MN (C), is the interval

[1,
1

2
(1 +

√
N)]

This suffices to show that provided the number N of generations is > 1, there is room

to get a small value of µ2
0. Note that a similar discussion applies to the cosmological term

γ0 which inherits a negative contribution from the presence of the MR term.

– 15 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
1

A. Real Structure and inner fluctuations

We just briefly recall here the definition of spectral triple (A,H,D) and of real structure [7]:

Definition 5. A spectral triple (A,H,D) is given by an involutive unital algebra A rep-

resented as operators in a Hilbert space H and a self-adjoint operator D with compact

resolvent such that all commutators [D,a] are bounded for a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z/2- grading γ which

commutes with any a ∈ A and anticommutes with D.

Definition 6. A real structure of KO-dimension n ∈ Z/8 on a spectral triple (A,H,D) is

an antilinear isometry J : H → H, with the property that

J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ (even case). (A.1)

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 given by

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1

ε′ 1 -1 1 1 1 -1 1 1

ε′′ 1 -1 1 -1

Moreover, the action of A satisfies the commutation rule

[a, b0] = 0 ∀ a, b ∈ A, (A.2)

where

b0 = Jb∗J−1 ∀b ∈ A, (A.3)

and the operator D satisfies

[[D,a], b0] = 0 ∀ a, b ∈ A . (A.4)

The key role of the real structure J is to yield the following adjoint action of the

unitary group U of the algebra A on the hilbert space H (of spinors). One defines a right

A-module structure on H by

ξ b = b0 ξ , ∀ ξ ∈ H , b ∈ A (A.5)

The unitary group of the algebra A then acts by the “adjoint representation” in H in the

form

ξ ∈ H → Ad(u) ξ = u ξ u∗ , ∀ ξ ∈ H , u ∈ A , u u∗ = u∗ u = 1 , (A.6)

and the inner fluctuation of the metric is given by

D → DA = D + A + ε′ J AJ−1 (A.7)

where A is a self-adjoint operator of the form

A =
∑

aj [D, bj ] , aj, bj ∈ A. (A.8)

The unimodular inner fluctuations are obtained by restricting to those A which are traceless

i.e. fulfill the condition Tr(A) = 0.
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